

WP3 APPLICATION OF RISK-BASED APPROACH TO NON-INDIGENOUS SPECIES (DESCRIPTOR 2)

Deliverable 3.2 - Shortlist of regional specific criteria elements and integration rules

November 2020

This document was elaborated by the WP3 coordinator (IPMA, I.P.) in collaboration with the WP3 partners, DRAM, MARE-ARDITI, MARE-FCUL and INERIS.

Authors by alphabetical order: Bartilotti, Cátia^{a,f}; Brignon, Jean-Marc^b; Canning-Clode, João^c; Cardoso, Inês^d; Carreira, Gilberto^e; Chainho, Paula^d; Chapon, Valentin^b; Gaudêncio, Maria José^{a,f}; Gizzi, Francesca^c; Hollatz, Claudia^a; Lobo Arteaga, Jorge^{a,g}; Macedo, José^e; Monteiro, João^c; Tuaty-Guerra, Miriam^{a,f}

^a Instituto Português do Mar e da Atmosfera, I.P. (IPMA, I.P.). Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.

^b Institut national de l'environnement industriel et des risques. Parc Technologique ALATA

BP 2, F-60550 Verneuil-en-Halatte, France.

^c MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo, Caminho da Penteada, 9020-105 Funchal, Madeira Island, Portugal.

^d MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

^e Direção Regional dos Assuntos do Mar (DRAM). Rua D. Pedro IV, 29, 9900-111 Horta, Azores, Portugal.

^f CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.

⁹ MARE - Marine and Environmental Sciences Centre, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.

Contents

Introduction	1
Risk Context	2
Management objectives	2
Assessment scale	4
Ecosystem elements	5
Risk parameters and categories	5
Summary of the Proposed Risk Approach for NIS (D2)	6
Risk Identification	
Pressures	8
Final Remarks	14
References	16
Annex 1	17
Annex 2	27

Introduction

Non-indigenous species (NIS) are one of the Marine Strategy Framework Directive (MSFD) qualitative descriptors of Good Environmental Status (GES) displaying some lack of knowledge, which points out to the need of coordinated monitoring among Member States (MS) at regional and sub-regional levels in order to characterise the pressures and impacts of transboundary nature, and to obtain reliable and comparable information, crucial for the protection of natural resources (EC, 2020a). Moreover, NIS are one of the key pressures considered by the European Union (EU) Member States, in the Common Implementation Strategy within a (sub)regional scope embracing the Bay of Biscay and the Iberian Coast, Macaronesia, the Celtic Seas and the Greater North Sea, including the Kattegat and the English Channel (EC, 2020b).

Under Task 3.1 "Data collection on D2", the existing information on introduction, spread and impacts of non-indigenous, cryptogenic and data-deficient species (definitions according to Tsiamis et al. 2019) from Descriptor 2 (D2) former evaluations, namely the MSFD initial and second assessments, the OSPAR Intermediate Assessment 2017, and the ICES Working Group on Introductions and Transfers of Marine Organisms (WGITMO), was collated and synthesised in Deliverable 3.1 (Bartilotti et al. 2020a). Under Task 3.2: "Define relevant criteria elements", based on the Commission Decision (EU) 2017/848 (EC, 2017), relevant GES criteria elements should be defined for the risk-based approach application. One of the relevant GES criteria elements selected in this work is a list of priority non-indigenous, cryptogenic and data-deficient species, hereinafter referred as NIS, at the sub-regional level (Bay of Biscay and the Iberian Coast- ABI, and Macaronesia- AMA).

The development of a risk-based approach for D2 follows the steps contained in the Deliverable 2.1 and is based on the ISO 31000 (2009) (Figure 1).

STEP 1	Risk Context	• Define: - Management objectives - Ecosystem elements - Assessment scale - Risk assessment parameters and categories
STEP 2	Risk Identification	 Identify: Drivers-Activities-Pressures-State Change chains
STEP 3	Risk Analysis	 Assess: Exposure and Consequence Uncertainty
STEP 4	Risk Evaluation	• Categorize: - Level of risk (high, medium, low)
STEP 5	Risk Treatment	 Review (based on risk priorities): Environmental targets (art. 10.^o) Monitoring programme (art. 11.^o) Programme of Measures (art. 13.^o)

Figure 1. The Risk-Based Approach as developed by the RAGES project.

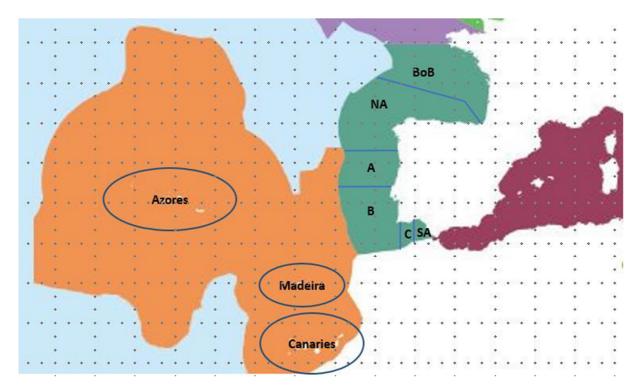
Risk Context

Management objectives

The criteria established by the Decision (EU) 2017/848 (EC, 2017) to assess GES provide the basis for the definition of the management objectives, as shown in Table 1.

Table 1. Criteria elements and criteria laid out in the Decision (EU) 2017/848 for D2. Management objectives developed for each criterion within the RAGES project are also shown.

Criteria elements	Criteria	Threshold values
Newly introduced NIS	D2C1 - Primary The number of NIS which are newly introduced via human activity into the wild,	Not available : To be established by MS through regional or sub- regional cooperation.
	per assessment period (6 years), measured from the reference year as reported for the	


	 initial assessment under Article 8(1) of Directive 2008/56/EC, is minimised and where possible reduced to zero. Management objective # 1: the number of new NIS records, per 6-year periods, is minimised or reduced to zero. 	
Established NIS, particularly invasive ones, which include relevant species on the list of invasive alien species of Union concern adopted in accordance with Article 4(1) of Regulation (EU) No 1143/2014 and species, which are relevant for use under criterion D2C3. MS shall establish that list through regional or sub- regional cooperation.	 D2C2 - Secondary Abundance and spatial distribution of established NIS, particularly of invasive species, contributing significantly to adverse effects on particular species groups or broad habitat types. Management objective # 2: the abundance and spreading of established NIS are controlled. 	Not required
Species groups and broad habitat types that are at risk from NIS, selected from those used for Descriptors 1 and 6. MS shall establish that list through regional or sub- regional cooperation.	 D2C3 - Secondary Proportion of the species group or spatial extent of the broad habitat type, which is adversely altered due to NIS, particularly invasive NIS. Management objective # 3: established NIS do not adversely affect species groups or broad habitat types. 	Not available: To be established by MS through regional or sub- regional cooperation.

Given that the current knowledge and the available information to achieve management objectives 2 and 3 are insufficient, it was decided to assess only the risk of not achieving the management objective 1, i.e., *the risk of not minimising the number of newly introduced species by human activity, per 6-year periods,* measured from the reference year (2012, 2018,

2024, etc.). Management objective 1 concerns the primary criterion D2C1, which is the only one mandatory for GES assessment within the MSFD context (Table 1). Management objectives 2 and 3 are associated with the secondary criteria (D2C2 and D2C3), for which the available information is insufficient (e.g., population status). Therefore, the achievement of management objectives 2 and 3 is not considered in this approach and should be treated in the future.

Assessment scale

Deliverable 3.1 (Bartilotti et al. 2020a) compiled the available information on NIS occurring in two MSFD sub-regions of the North-East Atlantic Ocean region, the Bay of Biscay and the Iberian Coast (ABI), and the Macaronesia (AMA). It is important to highlight that the assessment scale initially proposed for this task was the regional one, corresponding to the North-East Atlantic Ocean region, which comprises four sub-regions: (1) the Kattegat and the English Channel, (2) the Celtic Seas, (3) the Bay of Biscay and the Iberian Coast and (4) the Macaronesia. Since ecological and biological data on NIS were not compiled for the Kattegat and the English Channel, as well as the Celtic Seas, the most correct approach in the present Task should be at sub-regional level. Within the sub-regional areas, each MS divided their subdivisions in Marine Reporting Units (MRUs) taking into account their ecological and environmental characteristics. In the ABI sub-region, six MRUs were established: one in France (Bay of Biscay-BoB), two in Spain (North Atlantic-NA and South Atlantic-SA) and three in Portugal (Northwest-A, Southwest-B, and South-C). The AMA sub-region was divided in three MRUs, coincident with the three archipelagos of the two MS: two in Portugal (Azores and Madeira) and one in Spain (Canary Islands) (Figure 2).

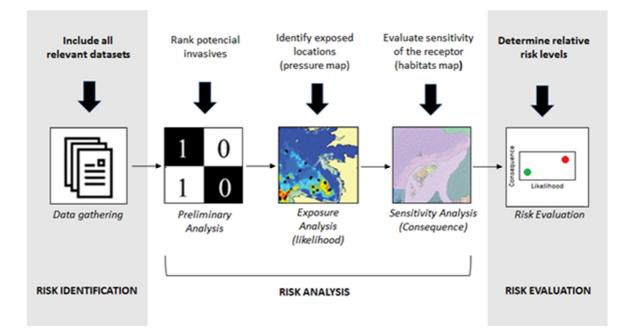
Figure 2. Delimitation of the MRUs. ABI sub-region: France, BoB - Bay of Biscay, Spain, NA - North Atlantic and SA - South Atlantic, and Portugal, A - Northwest, B - Southwest and C - South. AMA sub-region: the Portuguese archipelagos of the Azores and Madeira, and the Spanish archipelago of the Canary Islands.

Ecosystem elements

The sensitivity of the receptors to NIS introduction requires knowledge about the ecosystem elements (e.g., native species, species groups and habitat types) in order to assess the likelihood of change (consequence) arising from the applied pressure. However, there is still a lack of knowledge regarding the ecosystem elements at risk. Despite the observed limitations, the lack of information should not pose a constraint to the proposed risk approach, as the assessment of native species, species groups and broad habitat types at risk from NIS is related to the secondary criteria (D2C2 and D2C3), therefore not considered in this framework.

Risk parameters and categories

The evaluation of the risk of harm from human activities to the criteria elements considers two steps: the exposure of the elements to the pressure, and the consequence. It is important to underline that the parameters to assess exposure and consequence, depend on the data and knowledge available. For instance, to assess exposure, data retrieved from the intensity of a pathway activity may provide information regarding hotspots of NIS introduction. On the other hand, information on species attributes (e.g., behavioural, physiological changes arising from


a given pressure) must be taken into consideration for the appropriate assessment of consequence. Once the information regarding the sensitive areas is unavailable, the sensitivity analysis (consequence) cannot be performed. However, the risk of NIS introduction can be estimated based on the identification of locations where new introductions are more likely to occur, such as marinas, ports, terminals and aquaculture facilities. In addition, some information can be extracted from the distribution of established NIS, which can provide insight into areas more prone to new introductions (e.g., Crooks et al. 2010; Lenz et al. 2011; Clark and Johnston, 2011; Briggs, 2012; Früh et al. 2012).

Finally, broad categories of risk (low, medium, high) should inform the risk levels in order to achieve the first management objective - the number of new NIS records, per 6-year periods, is minimised or reduced to zero - as thresholds values are not currently available.

Summary of the Proposed Risk Approach for NIS (D2)

This section incorporates an option to support the development of an effective Risk-Based Approach (RBA) to NIS at sub-regional level. The proposed approach focuses primarily on criterion D2C1, which is the only mandatory for the assessment of GES within the MSFD context. However, some information available on the spatial distribution of established NIS (secondary criterion D2C2) and on their known adverse environmental and socioeconomic impacts (secondary criterion D2C3) will be incorporated in order to improve the risk framework. D2 is a particularly relevant descriptor to test a sub-regional approach because it can be considered as a 'transboundary harm' (Riley 2009), since NIS can easily pass from native to recipient regions through transboundary vectors and pathways.

The required steps of the RAGES RBA are summarised in the scheme below (Figure 3).

Figure 3. Diagrammatic representation of the work required under step 2 (Risk Identification), step 3 (Risk Analysis) and step 4 (Risk Evaluation) of the RAGES RBA, with a link to the three main steps of the ISO 31000 (2009). The data and analytical steps represented by the black arrows are dynamic and will change depending on the Descriptor, Criteria or the area of interest.

The RAGES RBA involves three main steps. The **risk identification** step relates to the process of determining the risk sources, considering their potential consequences to the receptor. In this step, it is relevant to identify the potential pressures and a list of risks. The **risk analysis** process involves the determination of the likelihood of an event and its consequence. The first component of the risk analysis - <u>preliminary analysis</u> - includes a list of potential pressures. This process is followed by the <u>identification of exposed locations</u> (production of pressure maps) and evaluation of the <u>most sensitive areas</u> (production of habitat maps). The **risk evaluation** step involves the estimation of the level of risk by assessing the likelihood, (the chance of something happening) and the sensitivity (the likelihood of change when a pressure is applied to an ecosystem element). As mentioned above, the <u>sensitivity analysis</u> will not be performed in this approach. Table 2 summarises a proposed risk approach to assess the risk of new introductions (i.e., new records). Further details will be given in the Deliverable 3.3.

Table 2. Summary of the proposed risk approach to assess the risk of new introductions (Criterion D2C1).

Phase	ISO Step	Newly introduced NIS
Risk Identification	Data gathering	Compilation of the existing spatial information on NIS introduction, spread and impacts.
Risk Analysis	Preliminary Analysis	Ranked list of species that should be of high priority for risk assessment.
	Exposure Analysis	 Identification of hotspots of introduction (e.g., marinas, ports, terminals and aquaculture facilities). Analysis of susceptible areas to NIS introductions (based on the spatial distribution of established NIS per MRU).
	Exposure Analysis - Identification of hotspots of introduction (e.g., marinas, ports, terminals and aquaculture facilities). - Analysis of susceptible areas to NIS introductions (based on the spatial distribution of established NIS	
Risk Evaluation	Risk Evaluation	 Likelihood of introduction (ranked NIS) versus the distribution of established NIS per MRU plotted on

Risk Identification

In this step, it is relevant to identify potential pressures. According to Ojaveer et al. (2015), the management should primarily focus on the introduction pathways, in order to minimise the risks of new introductions, based on the precautionary approach, with knowledge on the potential impact together with the likelihood of invasion to inform and support pre-border management decisions.

Pressures

The two different types of pressures for D2 are listed in the Commission Decision (EU) 2017/848 (EU, 2017), i.e., input (newly introduced NIS - D2C1) or spread of NIS (established NIS, particularly invasive ones - D2C2).

The relevant anthropogenic pressures were compiled for the sub-regions ABI and AMA and presented in Deliverable 3.1 of the Work-Package 3. A total of 454 species were compiled in the scope of the RAGES project for the two sub-regions, from the initial assessment (2012) to the second cycle assessment of the MSFD (2012-2018). In the second cycle 29 (6%) and 49 (14%) new records of NIS were registered in ABI and AMA, respectively.

The most common vectors of introduction were assessed. The results showed that ballast waters, followed by fouling and aquaculture were the most common vectors for the two subregions. However, the introduction vectors are still unknown for a considerable number of NIS. The results highlight the role of maritime transport (commercial shipping and recreational boating) and aquaculture as the major known drivers of the input and spread of NIS.

It was also possible to identify the main taxonomic groups for each sub-region. Within ABI most of the species belong to Arthropoda (23%), Mollusca (15%) and Rhodophyta (15%), while in the AMA sub-region, the majority of the species belong to Bryozoa (26%), Rhodophyta (24%) and Chordata (14%).

In this report, a preliminary list of NIS (herein including the cryptogenic and data-deficient species) is defined, as one of the relevant criteria elements for the assessment of GES for the two sub-regions in the scope of RAGES (ABI and AMA). The selection of NIS involved two steps. The first step considered the following aspects: i) known adverse effects, ii) population status, defined as established, not established and undetermined, and iii) presence/absence in each of the geographic units considered in the RAGES project, i.e., sub-region, MS, and respective Marine Reporting Units - MRUs (Annex 1). In the second step, the analysis was refined, and all the NIS classified with high impact in EASIN (European Alien Species Information Network), that provides technical and scientific support to the MSFD, were listed (Annex 2).

In the **first step**, Portugal (PT), Spain (ES) and France (FR) (ABI sub-region) totalized 113 NIS with known adverse effects (Table 3), with Spain presenting the highest number (79), followed by France (76) and Portugal (63). Most of these NIS are already established in the three MS. According to the information in Annex 1, in mainland Portugal, none of the NIS having its population status as not established or undetermined is widely distributed (present in the three MRU: A- NW; B- SW; C- S), i.e., they occur in one or two MRU only, and most of the times, whenever this happens the two MRU are contiguous. Few NIS with known adverse effects have an undetermined population status in mainland PT: 4 out of the 37 in MRU A-NW, 6 out of the 51 in MRU B-SW and 5 out of the 39 in MRU C-S. In mainland Spain, there are 36 species common to the two MRU (North and South Atlantic), but 14 with different population

status. From the 77 NIS listed in the Spanish North Atlantic MRU, 36 still have an undetermined population status, while in the South Atlantic MRU 21 of the 38 NIS with known adverse effects have an undetermined population status.

In France 28 of the 76 NIS have an undetermined population status. France has the highest number of NIS exclusively recorded in its Bay of Biscay MRU (18 species of which 7 are already established).

In the AMA sub-region 130 NIS have known adverse effects (Table 3). It is worth mentioning that 72 (55%) of these species are not included in the EASIN database to date. The Azores MRU has the highest number (84), followed by Madeira (69) and Canary Islands (31). In Portugal most of these species are already established (62 in the Azores and 43 in Madeira). In Spain, Canary Islands, nearly half (15) of these NIS are established. However, in the Canary Islands MRU, 16 of the 31 NIS listed have still an undetermined population status, while in the Azores and in Madeira the number of NIS with undetermined population status (26 and 21, respectively) represents much less than half the total number of NIS with known adverse effects. Considering the distribution of these NIS in the AMA sub-region (Annex 1), only six species are considered established in the three archipelagos (*Asparagopsis armata, Asparagopsis taxiformis, Bugula neritina, Bugulina simplex, Bugulina stolonifera* and *Caprella scaura*), and one single species is reported as not established: Corynomorpha prismatica in the Azores.

Table 3. Number of species with known adverse effects in the ABI and AMA sub-regions, by Member State (FR - France; ES - Spain; PT - Portugal) and MRU (BoB - Bay of Biscay; NA - North Atlantic; SA - South Atlantic; A - Northwest; B - Southwest; C - South) and population status (E - Established; NE - Not Established; U - Undetermined).

MSFD Sub-region (Total number of NIS)	Member State (Total number of NIS)	MRU (Total number of NIS)	Population Status	Number of NIS
ABI	FR	BoB	E	46
(113)	(76)	(76)	NE	2
			U	28
	ES (70)	NA (77)	E	39
	(79)	(77)	NE	2
			U	36

		SA	E	17
		(38)	NE	0
			U	21
	PT	A (07)	E	32
	(63)	(37)	NE	1
			U	4
		B (51)	E	43
		(51)	NE	2
			U	6
		C (20)	E	34
		(39)	NE	0
			U	5
AMA (120)	PT (110)	Madeira	E	43
(130)	(119)	(69)	NE	2
			U	24
		Azores (84)	E	62
		(04)	NE	1
			U	21
	ES	Canary Islands	E	15
	(31)	(31)	NE	0
			U	16

In the **second step** 70 NIS, reported in EASIN as high impact NIS, were sorted in the ABI subregion. The results, summarized in Table 4, show that France has the highest number of high impact NIS (54), followed by Spain (52) and Portugal (41). The French BoB MRU presents

also the highest number (11) of high impact NIS not shared with the other MS, followed by Spain (5, in the North Atlantic MRU contiguous with the French BoB). Eight high impact NIS are widely spread in the ABI. Three of these have populations established across the sub-region (*Acartia (Acanthacartia) tonsa, Asparagopsis armata* and *Ruditapes philippinarum*). Moreover, from the analysis of species distribution in the ABI sub-region, it is worth mentioning that:

- In the French Bay of Biscay MRU *Corbicula fluminea*, an oligohaline species, was not considered in its assessment since it occurs exclusively in its inland systems. Yet, this oligohaline species can be found in transitional waters, and for this reason, while it is considered by some MS in their inventories (e.g., ES and PT), it is not listed by those MS where it occurs exclusively in freshwater systems (see Tsiamis et al. 2019 for further details).
- In Portugal some of the absences might indicate a lack of information, since species that are established both in north and south of Portugal, are absent either from the MRU A-NW (Asparagopsis taxiformis, Blackfordia virginica, Botrylloides violaceus, Callinectes sapidus, Cordylophora caspia, Microcosmos squamiger and Palaemon macrodactylus all recorded in the B-SW and C-S MRU) or from the MRU C-S (Anguillicoloides crassus, Eriocheir sinensis, Molgula manhattensis, Mya arenaria, Penaeus japonicus, Rhithropanopeus harrisii, Styela clava, Tricellaria inopinata and Undaria pinnatifida, all recorded in the A-NW and B-SW MRU). Ulva australis, recorded in the MRU A-NW and C-S is absent from the MRU B-SW.

In AMA, 30 high impact NIS were sorted (Table 4). Of these, only 4 species are widely spread in the Macaronesian sub-region, 3 of them (*Asparagopsis armata, Asparagopsis taxiformis* and *Bugula neritina*) with established populations, while 7 are present in at least two of the three MRU considered, and 19 are present in only one MRU. The Azores have the highest number of high impact NIS (17) followed by Madeira (14) and Canary Islands (11). All the high impact NIS distributed in the Azores are established, while in Madeira the number of established NIS (7) equals the number of NIS with undetermined population status. In the Canary Islands, 5 NIS were recorded as having established populations and 6 as having undetermined population status. None of the high impact NIS distributed in AMA is classified as not established.

Table 4. Number of species with high impact (according to EASIN) in the ABI and AMA sub-regions, by Member State (FR - France; ES - Spain; PT - Portugal) and MRU (BoB - Bay of Biscay; NA - North Atlantic; SA - South Atlantic; A - Northwest; B - Southwest; C - South) and population status (E - Established; NE - Not Established; U - Undetermined).

MSFD Sub-region (Total number of NIS)	Member State (Total number of NIS)	MRU (Total number of NIS)	Population Status	Number of NIS
ABI	FR	BoB	E	33
(70)	(54)	(54)	NE	3
			U	18
	ES (FO)	NA (51)	E	25
	(52)	(51)	NE	0
			U	26
		SA	E	14
		(29)	NE	0
			U	15
	PT	A (25)	E	20
	(41)	(25)	NE	2
			U	3
		B	E	28
		(34)	NE	3
			U	3
		C (OE)	E	23
		(25)	NE	0
			U	2

AMA	(30) (24) (14) NE U Azores E (18) U U	E	7	
(30)	(24)	(14)	NE	0
			U	7
			E	18
		(10)	NE	0
			U	0
	ES (11)	Canary Islands	E	5
	(11)	(11)	NE	0
			U	6

Final Remarks

This report delivered a shortlist of criteria elements, including the management objectives, assessment scales and risk parameters and categories, defined within the risk context. A list of potential pressures was defined, which includes the NIS with known adverse effects highlighting those classified in EASIN as having high impact, as relevant criteria elements for the assessment of GES, providing support for the development of a risk-based approach to NIS in the Bay of Biscay and the Iberian coast, and in the Macaronesia. It is worth highlighting that the information in this list can be used to identify knowledge gaps (e.g., absence of a widely spread NIS in one MRU that is geographically located between MRU where the NIS is present), and to produce pressure maps considering the NIS with adverse effects and their population status.

A second approach is under development, which will be presented in the next task - T3.3 (Establish risk criteria and significance levels). In this task, risk criteria and aggregation methods will be defined, and risk scales (ratings) will be elaborated for D2 risk evaluation. A ranking system will be developed in order to define a list of relevant GES criteria elements. It is expected that the comparative analysis of the results of the two approaches will allow for an optimization of the definition of the relevant criteria elements, regarding the application of the risk-based approach to D2.

In the following task, T3.4 "Perform risk assessment", the methodology set in the previous steps will be used to perform the assessment on D2, in order to determine if there is a risk of not being in GES.

Finally, Task 3.5: "Risk management common targets and coordinated measures", will propose coordinated actions for D2 risk management to be implemented at sub-regional/national/local level (articles 10, 11 and 13) in areas of concern based on the administrative framework established.

References

- Bartilloti, C., Canning-Clode, J., Carbonell, A., Cardoso, I., Carreira, G., Chainho, P.; Gaudêncio, M. J., Gizzi, F.; Lobo Arteaga, J., Macedo, J., Massé, C., Monteiro, J., Png-Gonzalez, L., Tuaty-Guerra, M., Zaragoza, N. (2020a). WP3 Application of Risk-Based Approach to Non-Indigenous Species (Descriptor 2). Project RAGES: Risk-Based Approaches to Good Environmental Status. EU Grant Agreement No. 110661/2018/794607/SUB/ENV.C.2. Deliverable 3.1 Sub-regional data of non-indigenous species, 13 p + 2 annexes.
- Briggs, J. C. (2012). Marine species invasions in estuaries and harbors. *Marine Ecology Progress Series, 449,* 297-302.
- Clark, G. F., Johnston, E.L. (2011). Temporal change in the diversity invasibility relationship in the presence of a disturbance regime. *Ecology Letters*, *14*(1), 52-57.
- Crooks, J. A., Chang, A. L., Ruiz, G. M. (2010). Aquatic pollution increases the relative success of invasive species. *Biological Invasions, 13*(1), 165-176.
- EC (2017). Commission decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EU. *Official Journal of the European*, *L125*, 43-74.
- EC (2020a). Review of the status of the marine environment in the European Union towards clean, healthy and productive oceans and seas. Accompanying the Report from the Commission to the European Parliament and the Council on the implementation of the Marine Strategy Framework Directive (Directive2008/56/EC). *European Commission (EC). Brussels.*
- EC (2020b). Key stages and progress up to 2019. Accompanying the Report from the Commission to the European Parliament and the Council on the implementation of the Marine Strategy Framework Directive (Directive 2008/56/EC). European Commission (EC). Brussels.
- Früh, D., Stoll, S., & Haase, P. (2012). Physicochemical and morphological degradation of stream and river habitats increases invasion risk. *Biological Invasions*, *14*(11), 2243-2253.
- ISO (2009). International Standard. Risk Management Risk assessment techniques. Edition 1.0 2009-11 International Standards Organisation, Geneva.
- Lenz, M., da Gama, B. A., Gerner, N. V., Gobin, J., Gröner, F., Harry, A., ... & Xavier, E. A. (2011). Nonnative marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: results from a globally replicated study. *Environmental research*, 111(7), 943-952.
- Riley, S. (2009). Preventing transboundary harm from Invasive Alien Species. *Review of European Community & International Environmental Law, 18*(2), 198-210.
- Roy, H., Schonrogge, K., Dean, H., Peyton, J., Branquart, E., Vanderhoeven, S., ... & Essl, F. (2014). Invasive alien species-framework for the identification of invasive alien species of EU concern. ENV.B.2/ETU/2013/0026
- Tsiamis K., Palialexis, A., Stefanova, K., Gladan, Ž.N., Skejić S., Despalatović, M., ... & Bojanić, N. (2019). Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union's Marine Strategy Framework Directive. *Marine Pollution Bulletin*, 145, 429-435.
- Verbruggen, H., Leliaert F., Maggs C.A., Shimada S., Schils T., Provan J., Booth D., Murphy S., De Clerck O., Littler D.S., Littler M.M. & Coppejans E. (2007). Species boundaries and phylogenetic relationships within the green algal genus *Codium* (Bryopsidales) based on plastid DNA sequences. *Molecular Phylogenetics and Evolution*, 44, 240-254

Annex 1

Species with known adverse effects in the ABI and AMA sub-regions by Member State (FR – France; ES – Spain; PT – Portugal) and MRU (BoB – Bay of Biscay; NA – North Atlantic; SA – South Atlantic; A – Northwest; B – Southwest; C – South) and population status (E – Established; NE – Not Established; U – Undetermined). * Species recorded in mainland Portugal without reference to the location (in Verbruggen et al. 2007).

										Α	BI							
				FR				ES	,						PT			
				BoB	3		NA		S	4		Α			В		С	
Phylum	Class	Species	E	NE	υ	E	NE	U	E NI	ΕU		E NE	U	Ε	NE	U	E NE	U
Mollusca	Bivalvia	Anadara kagoshimensis						Х										
Annelida	Polychaeta	Boccardia proboscidea						Х										
Annelida	Polychaeta	Boccardia semibranchiata						Х										
Annelida	Polychaeta	Boccardiella ligerica						Х										
Cercozoa	Ascetosporea	Bonamia exitiosa						Х										
Arthropoda	Malacostraca	Caprella mutica						Х										
Chlorophyta	Ulvophyceae	Codium arabicum											*			*		*
Chlorophyta	Ulvophyceae	Codium fragile	x															
Mollusca	Bivalvia	Crassostrea rhizophorae			Х													
Mollusca	Bivalvia	Crassostrea virginica			Х													
Mollusca	Gastropoda	Crepipatella dilatata				X	[
Annelida	Polychaeta	Dipolydora tentaculata				X	[
Mollusca	Bivalvia	Ensis leei				X	[
Cnidaria	Anthozoa	Exaiptasia diaphana			Х													
Ochrophyta	Raphidophyceae	Fibrocapsa japonica						Х										
Arthropoda	Malacostraca	Homarus americanus			Х													
Annelida	Polychaeta	Hydroides ezoensis			Х													
Mollusca	Bivalvia	Mizuhopecten yessoensis			Х													
Ctenophora	Tentaculata	Mnemiopsis leidyi	x															
Arthropoda	Malacostraca	Monocorophium acherusicum					Х											
Arthropoda	Copepoda	Mytilicola intestinalis	x															
Arthropoda	Copepoda	, Mytilicola orientalis	x															
Mollusca	Bivalvia	Ostrea angasi			х													
Mollusca	Bivalvia	Ostrea puelchana			х													
Myzozoa	Dinophyceae	Ostreopsis ovata																Х
Myzozoa	Dinophyceae	Ostreopsis siamensis														Х		
Arthropoda	Malacostraca	Percnon gibbesi													х			

										AB								
				FR				ES			PT							
			I	BoB		ſ	A		SA		A	1		В			С	
Phylum	Class	Species	Ε	NE	U	ΕN	IE	UΕ	NE	U	E N	E	UΕ	NE	U	Ε	NE	ι
Annelida	Polychaeta	Pileolaria berkeleyana			Х													
Annelida	Polychaeta	Pista unibranchia				Х												
Ochrophyta	Bacillariophyceae	Pseudo-nitzschia multistriata										1	Х					
Platyhelminthes	Monogenea	Pseudodactylogyrus bini						Х										
Fracheophyta	Magnoliopsida	Spartina alterniflora	X															
Fracheophyta	Magnoliopsida	Spartina townsendii var. anglica	X															
Fracheophyta	Magnoliopsida	Spartina townsendii var. townsendii	X															
Mollusca	Bivalvia	Theora lubrica				X												
Chlorophyta	Ulvophyceae	Ulvaria obscura			X													
Bryozoa	Gymnolaemata	Victorella pavida			X													
Cercozoa	Ascetosporea	Bonamia ostreae				Х				Х								
Chordata	Ascidiacea	Botryllus schlosseri						Х					Х					
Rhodophyta	Florideophyceae	Dasysiphonia japonica	Х			Х												
Chordata	Actinopterygii	Fundulus heteroclitus heteroclitus						Х								Х		
Cnidaria	Hydrozoa	Gonionemus vertens	Х												Х			
Mollusca	Gastropoda	Haloa japonica				Х				Х								
Arthropoda	Malacostraca	Hemigrapsus takanoi	Х			Х												
Mollusca	Gastropoda	Hexaplex trunculus			Х	Х												
Annelida	Polychaeta	Hydroides dianthus			Х			Х										
Myzozoa	Dinophyceae	Karenia mikimotoi						Х		Х								
Cnidaria	Hydrozoa	Maeotias marginata	Х															1
Cercozoa	Ascetosporea	Marteilia refringens				Х		Х										
Arthropoda	Hexanauplia	Megabalanus tintinnabulum			Х										Х			
Arthropoda	Malacostraca	Monocorophium sextonae	Х					Х										
Arthropoda	Copepoda	Myicola ostreae			Х											Х		
Mollusca	Gastropoda	Ocinebrellus inornatus	х										Х					
Mollusca	Bivalvia	Petricolaria pholadiformis			Х			Х										
Rhodophyta	Florideophyceae	Polysiphonia morrowii			Х			Х										
Platyhelminthes	Monogenea	Pseudodactylogyrus anguillae	х					Х										
Mollusca	Gastropoda	Rapana venosa			Х			Х										

								AB						
			F	R		ES								
			Вс	в	1	A	SA		Α		В		0	2
Phylum	Class	Species	ΕN	ΕU	ΕN	NE U B	E NE	U	E NE	UΕ	NE	U	ΕN	Εl
Mollusca	Gastropoda	Urosalpinx cinerea		Х		Х								
Mollusca	Bivalvia	Xenostrobus securis			Х			Х						
Bryozoa	Gymnolaemata	Amathia verticillata							Х	Х			Х	
Arthropoda	Hexanauplia	Amphibalanus improvisus		Х	Х			Х						
Mollusca	Bivalvia	Arcuatula senhousia	X							Х		Х		
Arthropoda	Hexanauplia	Balanus trigonus		Х		Х				Х				
Ochrophyta	Bacillariophyceae	Biddulphia sinensis		Х						Х		Х		
Mollusca	Gastropoda	Crepidula fornicata	X		Х					Х				
Cnidaria	Anthozoa	Diadumene lineata	X			Х		Х						
Chordata	Ascidiacea	Didemnum vexillum		Х		Х)
Rhodophyta	Florideophyceae	Grateloupia turuturu	X		Х				x					
Arthropoda	Malacostraca	Penaeus japonicus		Х					x	Х				
Arthropoda	Malacostraca	Procambarus clarkii							x	Х			Х	
Bryozoa	Gymnolaemata	Schizoporella errata			Х								Х)
Rhodophyta	Florideophyceae	Asparagopsis taxiformis			Х			Х		Х			Х	
Rhodophyta	Florideophyceae	Bonnemaisonia hamifera	X		Х)	〈						Х	
Chordata	Ascidiacea	Botrylloides violaceus	X			Х				Х			Х	
Cnidaria	Hydrozoa	Cordylophora caspia	X)	〈			Х			Х	
Chordata	Ascidiacea	Corella eumyota	X		Х				x	Х				
Annelida	Polychaeta	Desdemona ornata		Х		Х				Х			Х	
Annelida	Polychaeta	Ficopomatus enigmaticus	X		Х)	〈			Х				
Mollusca	Bivalvia	Mercenaria mercenaria	x			Х			Х		Х			
Chordata	Ascidiacea	Microcosmus squamiger			x)	〈			х			х	
Chordata	Ascidiacea	Molgula manhattensis	x			Х			x	Х				
Mollusca	Bivalvia	Mya arenaria	X			х			х	х				
Annelida	Polychaeta	Prionospio pulchra			x				х	х			x	
Chordata	Ascidiacea	Styela clava	x		x				х	х				
Chordata	Ascidiacea	Styela plicata			х)	〈			х			х	

									AB	I					
			FR				ES					P	Г		
			Bol	3		NA		SA		Α		В		(С
Phylum	Class	Species	E NE	U	Е	NE	UΕ	NE	U	E NE	UE	NE	U	E NE	U
Chlorophyta	Ulvophyceae	Ulva australis	Х		Х					Х			2	X	
Ochrophyta	Phaeophyceae	Undaria pinnatifida	x		x					Х	Х	(
Nematoda	Chromadorea	Anguillicoloides crassus	X				Х		x	Х	Х	(
Rhodophyta	Florideophyceae	Antithamnionella ternifolia	Х		X					X	Х	(2	X	
Cnidaria	Hydrozoa	Blackfordia virginica	Х				Х		x		Х	(2	X	
Arthropoda	Malacostraca	Callinectes sapidus	Х				х х				Х	(2	X	
Chlorophyta	Ulvophyceae	Codium fragile subsp. fragile		X	X				x		Х	(2	X	
Ochrophyta	Phaeophyceae	Colpomenia peregrina			X		Х			Х	Х	(2	X	
Mollusca	Bivalvia	Corbicula fluminea			X		Х			Х	Х	(2	X	
Arthropoda	Malacostraca	Eriocheir sinensis	X				х х			Х	Х	(
Myzozoa	Dinophyceae	Gymnodinium catenatum			X				x	Х	Х	(2	X	
Arthropoda	Malacostraca	Palaemon macrodactylus	X				Х		x				Х		Х
Arthropoda	Malacostraca	Rhithropanopeus harrisii		X			х х			X	Х	(
Bryozoa	Gymnolaemata	Tricellaria inopinata	X		X		Х			X	Х	L .			
Rhodophyta	Florideophyceae	Agarophyton vermiculophyllum	Х				Х		x	Х	X	(2	X	
Ochrophyta	Phaeophyceae	Sargassum muticum	Х				Х		X	Х	X	(2	X	
Arthropoda	Copepoda	Acartia (Acanthacartia) tonsa	Х		Х		Х			Х	X	(2	X	
Arthropoda	Hexanauplia	Amphibalanus Amphitrite	Х		Х		Х			Х	X	(2	X	
Rhodophyta	Florideophyceae	Anotrichium furcellatum	Х				Х		X	Х	X	(2	X	
Rhodophyta	Florideophyceae	Antithamnionella spirographidis	Х		Х				X	Х	X	(2	X	
Rhodophyta	Florideophyceae	Asparagopsis armata	Х		Х		Х			Х	X	(2	X	
Arthropoda	Hexanauplia	Austrominius modestus	Х		Х				x	Х	X	(2	X	
Bryozoa	Gymnolaemata	Bugula neritina		Х			Х		x	Х	X	(2	X	
Mollusca	Bivalvia	Magallana gigas	Х		Х				Х	Х	X	(2	X	
Rhodophyta	Florideophyceae	Melanothamnus harveyi	Х		Х				Х	Х	X	(X	
Mollusca	Gastropoda	Potamopyrgus antipodarum	Х				Х		Х	Х	X	(X	
Mollusca	Bivalvia	Ruditapes philippinarum	Х		х		Х			х	X	(X	

1 2 3 4 5 6 Number of MRUs shared by species.

							AMA			
					F	т				ES
			Ν	ladei	ra	Az	ores		Canar	y Island
Phylum	Class	Species	E	NE	U	ΕN	IE U	E	NE	U
Rhodophyta	Florideophyceae	Acrothamnion preissii				Х				
Myzozoa	Dinophyceae	Alexandrium minutum				x				
Bryozoa	Gymnolaemata	Amathia gracilis					Х			
Arthropoda	Hexanauplia	Amphibalanus eburneus				x				
Rhodophyta	Florideophyceae	Antithamnion densum					Х			
Rhodophyta	Florideophyceae	Antithamnion hubbsii				x				
Rhodophyta	Florideophyceae	Antithamnionella ternifolia				x				
Mollusca	Gastropoda	Aplus dorbignyi				x				
Mollusca	Gastropoda	Aplysia dactylomela	x							
Chordata	Actinopterygii	Argyrosomus regius							x	
Chordata	Ascidiacea	Ascidia interrupta					Х			
Arthropoda	Hexanauplia	Austrominius modestus			Х					
Bryozoa	Gymnolaemata	Beania maxilladentata			Х					
Mollusca	Gastropoda	Bedeva paivae	x							
Chordata	Ascidiacea	Botrylloides violaceus			Х					
Annelida	Polychaeta	Branchiomma bairdi	x							
Annelida	Polychaeta	Branchiomma luctuosum				x				
Chlorophyta	Ulvophyceae	Caulerpa cylindracea						X	(
Chlorophyta	Ulvophyceae	Caulerpa prolifera				х				
Bryozoa	Gymnolaemata	Celleporaria inaudita	X							
Chordata	Ascidiacea	Ciona intestinalis					Х			
Chordata	Ascidiacea	Clavelina dellavallei	x							
Chordata	Ascidiacea	Clavelina oblonga				x				
Chlorophyta	Ulvophyceae	Codium fragile								Х
Chlorophyta	Ulvophyceae	Codium fragile subsp. fragile				x				

									AMA	•				
						PT							ES	
			Ν	/lade	ira		ŀ	Azor	es	_	(Canar	y Isla	nds
Phylum	Class	Species	Ε	NE	U	-	Ε	NE	U	-	Ε	NE	U	
Bryozoa	Gymnolaemata	Copidozoum tenuirostre							Х					
Rhodophyta	Florideophyceae	Corynomorpha prismatica						Х						
Bryozoa	Gymnolaemata	Cradoscrupocellaria bertholletii			Х									
Bryozoa	Stenolaemata	Crisia denticulata							Х					
Bryozoa	Gymnolaemata	Cryptosula pallasiana	X											
Porifera	Demospongiae	Desmacella meliorata							Х					
Chordata	Actinopterygii	Dicentrarchus labrax											Х	
Chordata	Ascidiacea	Didemnum perlucidum			Х									
Chordata	Actinopterygii	Diplodus vulgaris					Х							
Chordata	Ascidiacea	Distaplia magnilarva	X											
Annelida	Polychaeta	Eurythoe complanata	X											
Cnidaria	Anthozoa	Exaiptasia diaphana	X											
Annelida	Polychaeta	Ficopomatus enigmaticus					Х							
Rhodophyta	Florideophyceae	Grallatoria reptans							Х					
Rhodophyta	Florideophyceae	Grateloupia doryphora											Х	
Rhodophyta	Florideophyceae	Grateloupia lanceola											Х	
Porifera	Demospongiae	Haliclona (Rhizoniera) indistincta			Х									
Chlorophyta	Ulvophyceae	Halimeda incrassata					Х							
Annelida	Polychaeta	Hydroides elegans					Х							
Rhodophyta	Florideophyceae	Hypnea flagelliformis					Х							
Rhodophyta	Florideophyceae	Laurencia brongniartii					Х							
Rhodophyta	Florideophyceae	Laurencia chondrioides					Х							
Rhodophyta	Florideophyceae	Lophocladia trichoclados					Х							
Cnidaria	Hydrozoa	Macrorhynchia philippina			Х									
nidaria	Hydrozoa	Millepora alcicornis			Х									

			PT					MA			
					F	γŢ				E	S
			Ν	/lade	ira	A	zore	s	Ca	nary	Island
Phylum	Class	Species	E	NE	U	ΕI	NE	U	Ε	NE	U
Porifera	Demospongiae	Mycale (Carmia) senegalensis			Х						
Mollusca	Bivalvia	Mytilus edulis				Х					
Cnidaria	Hydrozoa	Obelia dichotoma			Х						
Mollusca	Bivalvia	Ostrea edulis				Х					
Echinodermata	Echinoidea	Ova canalifera			Х						
Bryozoa	Gymnolaemata	Parasmittina alba	X								
Bryozoa	Gymnolaemata	Parasmittina multiaviculata	X								
Bryozoa	Gymnolaemata	Parasmittina protecta	X								
Cnidaria	Hydrozoa	Pennaria disticha	X								
Arthropoda	Hexanauplia	Perforatus perforatus				Х					
Chordata	Ascidiacea	Perophora viridis						X			
Ochrophyta	Phaeophyceae	Petalonia binghamiae				Х					
Mollusca	Gastropoda	Phorcus sauciatus				Х					
Annelida	Polychaeta	Phyllodoce mucosa			Х						
Annelida	Polychaeta	Pileolaria berkeleyana			Х						
Mollusca	Bivalvia	Pinctada imbricata radiata				Х					
Chordata	Ascidiacea	Polyandrocarpa zorritensis	X								
Chordata	Ascidiacea	Polyclinum aurantium						X			
Porifera	Demospongiae	Prosuberites longispinus	X								
Chordata	Ascidiacea	Pycnoclavella taureanensis	X								
Chordata	Ascidiacea	Pyura tessellata						X			
Mollusca	Bivalvia	Ruditapes decussatus				х					
Annelida	Polychaeta	Sabella spallanzanii						x			
Rhodophyta	Florideophyceae	Scageliopsis patens						x			
Bryozoa	Gymnolaemata	Schizoporella pungens	x								

			A					MA			
					F	т				E	S
			Ν	1adei	ira		Azore	es	Ca	nary	Islands
Phylum	Class	Species	Ε	NE	U	Ε	NE	U	Ε	NE	U
Arthropoda	Malacostraca	Sphaeroma walkeri	X								
Cnidaria	Мухоzоа	Sphaerospora testicularis									Х
Rhodophyta	Florideophyceae	Spongoclonium caribaeum				X					
Chordata	Ascidiacea	Styela clava				X					
Ochrophyta	Phaeophyceae	Stypopodium schimperi									Х
Rhodophyta	Florideophyceae	Symphyocladia marchantioides				X					
Chordata	Ascidiacea	Symplegma brakenhielmi	x								
Cnidaria	Hydrozoa	Tubularia indivisa						Х			
Ochrophyta	Phaeophyceae	Undaria pinnatifida									Х
Ctenophora	Tentaculata	Vallicula multiformis			Х						
Rhodophyta	Florideophyceae	Womersleyella setacea							x		
Rhodophyta	Florideophyceae	Xiphosiphonia pinnulata				X					
Bryozoa	Gymnolaemata	Amathia verticillata	x			Х					
Arthropoda	Hexanauplia	Amphibalanus amphitrite			Х	х					
Rhodophyta	Florideophyceae	Anotrichium furcellatum	x					Х			
Rhodophyta	Florideophyceae	Antithamnion diminuatum				х					Х
Rhodophyta	Florideophyceae	Antithamnionella spirographidis			Х			Х			
Arthropoda	Hexanauplia	Balanus trigonus	x			х					
Rhodophyta	Florideophyceae	Bonnemaisonia hamifera				х			x		
Chlorophyta	Ulvophyceae	Caulerpa webbiana	x			х					
Rhodophyta	Florideophyceae	Ceramium cingulatum				х					Х
Chordata	Ascidiacea	Clavelina lepadiformis	x			х					
Porifera	Demospongiae	Crambe crambe	x						х		
Chordata	Ascidiacea	Diplosoma listerianum	x								Х
Chordata	Ascidiacea	Distaplia corolla	x			х					

			AM/ PT					MA		
					P	τ				ES
			Ν	/lade	ira	Α	zore	s	Cana	ary Island
Phylum	Class	Species	Ε	NE	U	Е	NE	U	ΕN	E U
Cnidaria	Hydrozoa	Ectopleura crocea			Х	Х				
Chordata	Ascidiacea	Eudistoma angolanum			Х			Х		
Rhodophyta	Florideophyceae	Grateloupia turuturu			Х	x				
Rhodophyta	Florideophyceae	Gymnophycus hapsiphorus				x				Х
Mollusca	Gastropoda	Hexaplex trunculus	X			x				
Cnidaria	Hydrozoa	Kirchenpaueria halecioides	X			x				
Mollusca	Bivalvia	Lyrodus pedicellatus			Х			Х		
Rhodophyta	Florideophyceae	Melanothamnus harveyi				x			х	
Rhodophyta	Florideophyceae	Melanothamnus sphaerocarpus			Х	x				
Arthropoda	Malacostraca	Paracerceis sculpta	X			x				
Mollusca	Bivalvia	Psiloteredo megotara			Х			Х		
Chordata	Actinopterygii	Sparus aurata			Х					Х
Annelida	Polychaeta	Spirorbis (Spirorbis) marioni			Х	x				
Chordata	Ascidiacea	Styela plicata				x			х	
Bryozoa	Gymnolaemata	Tricellaria inopinata	x			x				
Mollusca	Gastropoda	Truncatella subcylindrica			Х	x				
Bryozoa	Gymnolaemata	Virididentula dentata	x			x				
Bryozoa	Gymnolaemata	Watersipora subtorquata	x			x				
Rhodophyta	Florideophyceae	Asparagopsis armata	Х			х			Х	
Rhodophyta	Florideophyceae	Asparagopsis taxiformis	Х			х			Х	
Chordata	Ascidiacea	Botryllus schlosseri	Х			х				X**
Bryozoa	Gymnolaemata	Bugulina fulva	x					Х		Х
Bryozoa	Gymnolaemata	Bugulina simplex	x			Х			Х	
Bryozoa	Gymnolaemata	Bugula neritina	x			Х			Х	
Bryozoa	Gymnolaemata	Bugulina stolonifera	x			х			х	

						AMA			
				l	РТ			E	S
			Mad	leira	A	ores	C	anary	Islands
Phylum	Class	Species	E N	ΕU	E	NE U	Ε	NE	U
Arthropoda	Malacostraca	Caprella scaura	Х		Х		Х		
Chordata	Ascidiacea	Microcosmus squamiger		Х	Х				Х
Porifera	Calcarea	Paraleucilla magna		Х	Х		Х		
Bryozoa	Gymnolaemata	Reptadeonella violacea	х			Х	х		
Bryozoa	Gymnolaemata	Schizoporella errata	х		Х				х

** Botryllus schlosseri is present in the Canary Islands but it is not considered in the NIS group (as defined in this report) by the Spanish MSFD experts on D2, because of its hypothetical native distribution in the NE Atlantic. However, the species is classified as cryptogenic in EASIN. Its register in the Canary Islands is kept in this list solely for the purpose of assessing its geographical distribution.

1 2 3 Number of MRUs shared by species.

Annex 2

Species classified as having high impact in EASIN in the ABI and AMA sub-regions, by Member State (FR – France; ES – Spain; PT – Portugal) and MRU (BoB – Bay of Biscay; NA – North Atlantic; SA – South Atlantic; A – Northwest; B – Southwest; C – South) and population status (E – Established; NE – Not Established; U – Undetermined).

											AB	I								
				FR				E	ES							PT				
				BoB		_	NA			SA			Α			В			С	
Phylum	Class	Species	Е	NE	U	I	E NE	U	Ε	NE	U	Е	NE	U	Ε	NE	U	Εľ	NE	U
Mollusca	Bivalvia	Anadara kagoshimensis						Х												
Annelida	Polychaeta	Boccardiella ligerica						Х												
Arthropoda	Malacostraca	Caprella mutica						Х												
Mollusca	Bivalvia	Crassostrea virginica			X															
Mollusca	Bivalvia	Ensis leei)	ĸ													
Arthropoda	Malacostraca	Homarus americanus			X															
Annelida	Polychaeta	Hydroides ezoensis			X															
Ctenophora	Tentaculata	Mnemiopsis leidyi	X																	
Arthropoda	Copepoda	Mytilicola intestinalis	X																	
Arthropoda	Copepoda	Mytilicola orientalis	X																	
Arthropoda	Malacostraca	Percnon gibbesi														Х				
Annelida	Polychaeta	Pileolaria berkeleyana			X															
Platyhelminthes	Monogenea	Pseudodactylogyrus bini						Х												
Tracheophyta	Magnoliopsida	Spartina alterniflora	X																	
Tracheophyta	Magnoliopsida	Spartina townsendii var. anglica	X																	
Tracheophyta	Magnoliopsida	Spartina townsendii var. townsendii	X																	
Bryozoa	Gymnolaemata	Victorella pavida			X															
Cercozoa	Ascetosporea	Bonamia ostreae				2	K				Х									
Cnidaria	Hydrozoa	Gonionemus vertens	Х														Х			
Arthropoda	Malacostraca	Hemigrapsus takanoi	Х			2	ĸ													
Annelida	Polychaeta	Hydroides dianthus			Х			Х												
Myzozoa	Dinophyceae	Karenia mikimotoi						Х			Х									
Cercozoa	Ascetosporea	Marteilia refringens				2	ĸ		Х											
Arthropoda	Malacostraca	Monocorophium sextonae	Х					Х												
Arthropoda	Copepoda	Myicola ostreae			Х													Х		
Mollusca	Bivalvia	Petricolaria pholadiformis			Х			Х												
Rhodophyta	Florideophyceae	Polysiphonia morrowii			Х			Х												
Platyhelminthes	Monogenea	Pseudodactylogyrus anguillae	Х					Х												

											AB	I						
				FR				E	S						PT			
				BoB			NA			SA			Α		В		(2
Phylum	Class	Species	Е	NE	U	Ε	NE	U	Ε	NE	U	Ε	NE	υI	E NE	U	ΕN	ΕU
Mollusca	Gastropoda	Rapana venosa			Х			Х										
Mollusca	Gastropoda	Urosalpinx cinerea			Х			Х										
Mollusca	Bivalvia	Xenostrobus securis				Х					Х							
Arthropoda	Hexanauplia	Amphibalanus improvisus			Х	Х					Х							
Mollusca	Bivalvia	Arcuatula senhousia	X											Х		Х		
Ochrophyta	Bacillariophyceae	Biddulphia sinensis			Х									Х		Х		
Mollusca	Gastropoda	Crepidula fornicata	X			Х								Х				
Chordata	Ascidiacea	Didemnum vexillum			Х			Х										Х
Rhodophyta	Florideophyceae	Grateloupia turuturu	X			Х						Х						
Arthropoda	Malacostraca	Penaeus japonicus			Х							Х)	ĸ			
Arthropoda	Malacostraca	Procambarus clarkii										Х)	ĸ		х	
Rhodophyta	Florideophyceae	Asparagopsis taxiformis				Х					Х)	ĸ		х	
Rhodophyta	Florideophyceae	Bonnemaisonia hamifera	X			Х			Х								х	
Chordata	Ascidiacea	Botrylloides violaceus	X					Х)	ĸ		Х	
Cnidaria	Hydrozoa	Cordylophora caspia	X						Х)	ĸ		Х	
Annelida	Polychaeta	Ficopomatus enigmaticus	X			Х			Х)	ĸ			
Mollusca	Bivalvia	Mercenaria mercenaria	X					Х					Х		Х			
Chordata	Ascidiacea	Microcosmus squamiger				Х			Х)	ĸ		Х	
Chordata	Ascidiacea	Molgula manhattensis	X					Х				Х)	ĸ			
Mollusca	Bivalvia	Mya arenaria	X					Х				Х)	ĸ			
Chordata	Ascidiacea	Styela clava	X			x						x)	ĸ			
Chordata	Ascidiacea	Styela plicata				Х			Х)	ĸ		х	
Chlorophyta	Ulvophyceae	Ulva australis	X			Х						Х					Х	
Ochrophyta	Phaeophyceae	Undaria pinnatifida	X			X						Х)	ĸ			
Nematoda	Chromadorea	Anguillicoloides crassus		Х				Х			Х		Х		Х			
Cnidaria	Hydrozoa	Blackfordia virginica	X					Х			X)	ĸ		х	
Arthropoda	Malacostraca	Callinectes sapidus		Х				Х	Х)	K		X	
Chlorophyta	Ulvophyceae	Codium fragile subsp. fragile			X	X					x)	ĸ		Х	
Mollusca	Bivalvia	Corbicula fluminea				X			Х			х)	K		Х	
Arthropoda	Malacostraca	Eriocheir sinensis	x					Х	х			x			ĸ			

											AB	I							
				FR				E	S						PT	Г			
				BoB	6		NA			SA			Α		В	6		С	
Phylum	Class	Species	E	NE	U	Ε	NE	U	ΕI	NE	υ	Е	NE	U	E NI	ΕI	JΕ	NE	U
Myzozoa	Dinophyceae	Gymnodinium catenatum				Х					Х	X			Х		Х		
Arthropoda	Malacostraca	Palaemon macrodactylus	×					Х			X					2	K		X
Arthropoda	Malacostraca	Rhithropanopeus harrisii			X			Х	Х			X			Х				
Bryozoa	Gymnolaemata	Tricellaria inopinata	X			x			Х			x			Х				
Arthropoda	Copepoda	Acartia (Acanthacartia) tonsa	X			Х			Х			Х			Х		Х		
Ochrophyta	Phaeophyceae	Sargassum muticum	X			Х					Х	Х			Х		Х		
Rhodophyta	Florideophyceae	Asparagopsis armata	X			Х			Х			Х			Х		Х		
Arthropoda	Hexanauplia	Austrominius modestus	X			Х					Х	х			Х		Х		
Bryozoa	Gymnolaemata	Bugula neritina			Х			Х			Х	Х			Х		Х		
Mollusca	Bivalvia	Magallana gigas	X			Х					Х	х			Х		Х		
Mollusca	Gastropoda	Potamopyrgus antipodarum		Х				Х			Х	х			Х		Х		
Mollusca	Bivalvia	Ruditapes philippinarum	x			Х			Х			х			Х		Х		

1 2 3 4 5 6

Number of MRUs shared by species.

							Α	MA			
					P	т				E	S
			Μ	adei	ira	A	Zores		С	anary	Island
Phylum	Class	Species	Ε	NE	U	Ε	NE U	J	Е	NE	U
Rhodophyta	Florideophyceae	Acrothamnion preissii				x					
Myzozoa	Dinophyceae	Alexandrium minutum				X					
Mollusca	Gastropoda	Aplysia dactylomela	Х								
Arthropoda	Hexanauplia	Austrominius modestus			Х						
Chordata	Ascidiacea	Botrylloides violaceus			Х						
Chlorophyta	Ulvophyceae	Caulerpa cylindracea							Х		
Chlorophyta	Ulvophyceae	Codium fragile subsp. fragile				X					
Annelida	Polychaeta	Ficopomatus enigmaticus				X					
Rhodophyta	Florideophyceae	Grateloupia doryphora									Х
Annelida	Polychaeta	Hydroides elegans				X					
Cnidaria	Hydrozoa	Macrorhynchia philippina			Х						
Mollusca	Bivalvia	Mytilus edulis				X					
Annelida	Polychaeta	Pileolaria berkeleyana			Х						
Mollusca	Bivalvia	Pinctada imbricata radiata				X					
Chordata	Ascidiacea	Polyandrocarpa zorritensis	Х								
Chordata	Ascidiacea	Styela clava				X					
Ochrophyta	Phaeophyceae	Stypopodium schimperi									Х
Ochrophyta	Phaeophyceae	Undaria pinnatifida									Х
Rhodophyta	Florideophyceae	Womersleyella setacea							Х		
Rhodophyta	Florideophyceae	Bonnemaisonia hamifera				х			х		
Chordata	Ascidiacea	Diplosoma listerianum	Х								Х
Rhodophyta	Florideophyceae	Grateloupia turuturu			Х	х					
Mollusca	Gastropoda	Hexaplex trunculus	Х			х					
Annelida	Polychaeta	Spirorbis (Spirorbis) marioni			Х	х					
Chordata	Ascidiacea	Styela plicata				х			х		

				AMA	
			F	т	ES
			Madeira	Azores	Canary Islands
Phylum	Class	Species	E NE U	E NE U	E NE U
Bryozoa	Gymnolaemata	Tricellaria inopinata	x	x	
Rhodophyta	Florideophyceae	Asparagopsis armata	X	Х	Х
Rhodophyta	Florideophyceae	Asparagopsis taxiformis	Х	х	х
Bryozoa	Gymnolaemata	Bugula neritina	x	Х	Х
Chordata	Ascidiacea	Microcosmus squamiger	X	Х	Х

1 2 3 Number of MRUs shared by species.